HYDROGEN PEROXIDE - LEAD Many iodometric titrations use starch to enhance the endpoint. This should only be added near the end of the titration. High iodine concentrations, present early in the determination, can decompose starch. | ORDER CODE
MODEL | TEST SYSTEM
DETAILED ON PAGES 6-7) | RANGE/SENSITIVITY | # OF TESTS
(# REAGENTS) | SHIPPING CODE
(WEIGHT/LBS) | |---|---|--|----------------------------|-------------------------------| | HYDROGEN PEROXIDE Although peroxide may be tested colorimetrically with DPD, the most common method is iodometric titration using a standard thiosulfate solution. Both methods are offered. | | | | | | 3188
HP-40 | DPD Tablet
Octet Comparator | Low: 0.1 , 0.3 , 0.5 , 0.75 , 1.0 , 1.25 , 1.5 , 2.0 ppm H_2O_2 High: 2 , 6 , 10 , 15 , 20 , 25 , 30 , 40 ppm H_2O_2 | 50 (2) | NH (1) | | 7138-DB | lodometric
Dropper Bottle | $1 \text{ drop} = 5 \text{ ppm H}_2\text{O}_2$ | 50 (4) | HF (2) | | 7150 | lodometric
Dropper Bottle | $1 \text{ drop} = 0.5\% \text{ H}_2\text{O}_2$ | 50 (4) | HF (2) | | 2984LR-H | Test Strips | 0, 1, 3, 10, 30, 50 | 50 (1) | NH (1) | | IODINE As with many other oxidizers, iodine may be titrated with a standard thiosulfate solution, hence the name iodometric titration. | | | | | | 7253-DR
PIT-DR | Direct Reading Titrator | 0–50 ppm/1 ppm l ₂ | 50 at 50 ppm (3) | R1 (1) | | 7253
PIT-DC | Dropper Pipet | $1 \text{ drop} = 2.5 \text{ ppm } I_2$ | 100 at 25 ppm (3) | R1 (1) | | 2948-BJ | Test Papers | 12, 25, 50, 100 ppm l ₂ | 200 | NH (1) | | IRON Bipyridyl is a ferrous iron indicator that tests total iron after any ferric iron is reduced to ferrous in the sample. Ferrous and ferric may be tested separately by eliminating the reduction step. A similar ferrous indicator, 1,10 phenanthroline, is used in the DC1200 kit. | | | | | | 7787
P-62 | Total Iron
Octet Comparator
with Axial Reader | 0.05, 0.10, 0.20, 0.30, 0.40, 0.60, 0.80, 1.0 ppm Fe | 30 (2) | R1 (1) | | 3318
SL-P61 | Total Iron
Octa-Slide | 0.5, 1.0, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0 ppm Fe | 90 (2) | R1 (1) | | 3347
SL-P-63 | Ferrous/Ferric Iron
Octa-Slide | 0.5, 1.0, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0 ppm Fe | 100 (2) | R1 (1) | | 3681-01
DC1200-FE | Total Iron
1, 10 Phenanthroline
Colorimeter | 0–4.0 ppm/0.25 ppm Fe | 100 (2) | R1 (1) | | LEAD The presence of lead in solder is detected by the reaction of a solder sample with acid and sodium rhodizonate. | | | | | | 3582
PBS | Spot Plate
Plumbing Inspector Kit | Yes/No | 100 (3) | R1 (2) |